On the Riesz bases, frames and minimal exponential systems in L2[-π,π]

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

Frames, Riesz Bases and Double Infinite Matrices

In this paper we have used double infinite matrix A = (ailjk) of real numbers to define the A-frame. Some results on Riesz basis and A-frame also have been studied. This Work is motivated from the work of Moricz and Rhoades [7]. 2001 AMS Classification. Primary 41A17, Secondary 42C15.

متن کامل

G–frames and G–Riesz Bases

Abstract G-frames are generalized frames which include ordinary frames, bounded invertible linear operators, as well as many recent generalizations of frames, e.g., bounded quasi-projectors and frames of subspaces. G-frames are natural generalizations of frames and provide more choices on analyzing functions from frame expansion coefficients. We give characterizations of g-frames and prove that...

متن کامل

g-frames, g-orthonormal bases and g-riesz bases

g-frames in hilbert spaces are a redundant set of operators which yield a repre-sentation for each vector in the space. in this paper we investigate the connection betweeng-frames, g-orthonormal bases and g-riesz bases. we show that a family of bounded opera-tors is a g-bessel sequences if and only if the gram matrix associated to its de nes a boundedoperator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 2011

ISSN: 0385-4035

DOI: 10.14492/hokmj/1300108400